If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x=8x^2
We move all terms to the left:
40x-(8x^2)=0
determiningTheFunctionDomain -8x^2+40x=0
a = -8; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·(-8)·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*-8}=\frac{-80}{-16} =+5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*-8}=\frac{0}{-16} =0 $
| 9-2u=7u | | -3=-6z-z-3 | | 13m-7m-3m=6 | | 13m-7-3=6 | | -3(7+7x)=-1-5(4-7x) | | 2(g+-8)=-10 | | 13d–5=60 | | 13d–5=60= | | 3/4(8x-4)=33 | | 20w-19w=8 | | 3x-6=9x+48 | | -7x-2(2x+11)=-13 | | x+x=31-6x+4x | | 11g-5g=18 | | 10a-116=324 | | 3x+54=I80 | | 3q-q-2=18 | | 3+x=4.8+0.4x | | 7f=57 | | 142x+18=82 | | -3/b=3 | | 142+18x=82 | | 82x+18=142 | | 18x+82=142 | | 11v+-v=20 | | 142+82x=18 | | 3x-86=11 | | 2(2x-9)=30 | | 3x^2-24x+120=0 | | 17-6x4x-10=0 | | 82+18x=142 | | 64^2x+4=16^5x. |